

Prifysgol Nottingham

Professor Kevin Sinclair

Nottingham University

Genetics of one-carbon metabolism in sheep in relation to productivity, fertility and health

Kevin Sinclair

kevin.sinclair@nottingham.ac.uk

Micro-nutrients involved in one-carbon metabolism

Elements directly involved/affected

- Cobalt (B12)
- Sulphur
 - Methionine, Cysteine (Homocysteine, Glutathione (GSH))
- Zinc
- Choline
- Folic acid (B9)
- Pyridoxine (B6)
- Riboflavin (B2)

Elements indirectly involved/affected

- Selenium
 - SeMet, SeCys, GSH
- Thiamine (B1)
- Copper

One-carbon metabolism

Veterinary Investigation Diagnosis Analysis database

Group 1. Systemic diseases and those not readily classified organically

VIDA diagnosis: only cases of clinical disease from samples submitted to VLA/SAC

Cobalt (B₁₂) deficiency

Cost to industry

I.Lamb growth ↓ 30% II.Autumn lamb sales ↓ £5.3 million III.Prophylatic treatment – up to £35 million

Deficiencies

- Cobalt 'pine'
- Anorexia
- Anaemia
- Infertility
- Neonatal viability
- Hepatic steatosis
- Polioencephalomalacia (sulphur)

Soil levels

рН

Age

Epidemiology, Biomarkers & Prevention

Vitamins B2 and B6 and Genetic Polymorphisms Related to Research Article One-Carbon Metabolism as Risk Factors for Gastric

Adenocarcinoma in the European Prospective

Investigation into Cancer and Nutrition

Simone J.P.M. Eussen¹, Stein Emil Vollset^{1,2}, Steinar Hust Åse Fredriksen¹, Per Magne Ueland¹, Mazda Jenab⁵, Nad Núria Sala⁷, Gabriel Capellá⁸, Giuseppe Del Giudice⁹, Dom Nuria Sala , Gabriel Capella , Gluseppe De Bildhard 12, Fáti H. Bas Bueno-de-Mesquita 12, Frederike L. Büchner 12, Fáti Rosario Tumino ¹⁷, Salvatore Panico ¹⁸, Göran Berglund ¹⁹
Göran Hallmans²², Carmen Martinez^{23,24}, Larraitz Arrizola
Laudina Rodriguez²⁸, Sheila Bingham^{25,26}, Jakob Lins Anne Tjønneland³⁴, Petra H.M. Peeters^{15,35}, Mattijs E. N Marie-Christine Boutron-Ruault³⁶, Sophie Morois³⁶, Anto Mario Plebani³⁹, Elio Riboli¹⁵, and Carlos A. González⁶

HUMAN MUTATION 28(9), 856-865, 2007

RESEARCH ARTICLE

Large-Scale Population-Based Metabolic Phenotyping of Thirteen Genetic Polymorphisms Related to One-Carbon Metabolism

Meyer, Per Magne Ueland, Stein Emil Vollset, Tom Grotmol, 2

elated Vitamins, University of Bergen, Bergen, Norway; ²Cancer Registry of Norway, Oslo, Norway

Available online at www.sciencedirect.com ScienceDirect

Molecular Genetics and Metabolism 91 (2007) 85-97

www.elsevier.com/locate/ymgs

Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase

C. Lee Elmore ^a, Xuchu Wu ^b, Daniel Leclerc ^c, Erica D. Watson ^b, Teodo Natalia I. Krupenko ^c, Sergey A. Krupenko ^c, James C. Cross ^b, Rim

The Journal of Nutrition

Biochemical, Molecular, and Genetic Mechanisms

Steatosis in Mice Is Associated with Gender, Folate Intake, and Expression of Genes of One-Carbon Metabolism¹⁻³

Karen E, Christensen, Oing Wu, Xiaoling Wang, Livuan Deng, Marie A, Caudill, and Rima Rozen

⁴Departments of Human Genetics and Pediatrics, McGill University-Montreal Children's Hospital, Montreal, Quebec, Canada H3Z 2Z3; and 5Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853

Objectives

Objective 1. SNP discovery

Objective 2. Functional significance of SNPs

Objective 3. Functional consequences study

Objective 1. SNP discovery:

- Nasal swabs from 24 ewes
 - Selected 20 for sequencing
 - ARK-Genomics Illumina HiSeq2000
 - Sequenced to a depth of 30X
 - ID SNPs within the population
 - Quantify minor allele frequencies of SNPs
 - For targeted SNP typing under Objective 2
- Called SNPs
 - Mapped sequence data to reference sheep genome
 - Called high confidence SNPs and indels
 - Submitted high confidence SNPs to dbSNP
 - http://www.ncbi.nlm.nih.gov/SNP/

SNP Discovery

- DNA sequencing 20 x sheep (2 pools)
- Map to the sheep genome (BWA)
- QC SNP calls (realign and recalibrate around known variants)

Call SNPs (FreeBayes with minimum coverage 4)

Transcripts of interest	227		
Total SNPs	57739		
intron variant	45986	79.6%	
downstream gene variant	5147	8.9%	
upstream gene variant	5026	8.7%	5026
synonymous variant	573	1.0%	573
3 prime UTR variant	448	0.8%	448
missense variant	394	0.7%	394
splice region variant, intron variant	85	0.1%	85
5 prime UTR variant	47	0.1%	47
splice region variant, synonymous variant	18	0.0%	18
missense variant, splice region variant	6	0.0%	6
splice donor variant	4	0.0%	4
stop gained	3	0.0%	3
splice acceptor variant	2	0.0%	2
Total			6090

Linked folate and methionine cycles

SNPs in 1C metabolism and lamb performance

Diet	Control	Methyl Deficient	
Genetic background	Mixed ('Low' and 'At-risk')	'Low-risk'	'At-risk'
No. Lambs	16 (8 + 8)*	16	16

