

Prifysgol Nottingham

Dr Nigel Kendall

Nottingham University

A risk management approach to trace element supplementation

Dr Nigel Kendall

Responses to trace elements

Trace element problems

- Not necessarily a deficiency
- Often complex interactions
- Can be a toxicity
- Within UK can classify into 3 categories:

Deficiency elements	Toxic elements	Excessive elements	
Se, I, Mn, Co, Zn (Cu?)	Cu, Se, I, Co	Fe, S, Mo, Al, Se	

Defining risk

First things first

- Dry Matter Intake
- Energy/Protein
- Water

Parasites

• Then.....

What information on farm?

- Production/Performance
 - Growth rates
 - Scan %
 - Barren %
- Health Issues / Status
- Diet Formulated, offered and fed
 - Predominantly grazing for sheep
- Water Source / Access
- History of Supplementation / Treatments

Details to assemble

- Forage(s)
 - Grazing analysis
- Other feedstuffs?
- Water
 - Especially non mains supplies
- Animal
 - Blood
 - Liver
 - Urine (hard in sheep)

Management groups and Sample Numbers

Variation in grass by field

	Se	Co	Cu	Mo	Fe
	mg/kgDM	mg/kgDM	mg/kgDM	mg/kgDM	mg/kgDM
grass park	0.036	0.158	7.8	1.09	286
cv	35.2	16.8	5.6	9.3	21
grass backpark	0.052	0.221	8.8	1.82	477
cv	50.6	4.2	1.4	5.7	3.5
Field by Barn	0.07	0.174	7.9	1.02	313
cv	14.2	6.3	2.2	10.2	7.9
grass steep windy	0.12	0.402	10	1.23	1117
CV	13.6	27.1	12	5.1	11.7
grass HSG	0.126	0.482	11	3.43	1142
CV	11.6	0.9	20.1	10.8	10.1
Normal range	0.2-0.3	0.3-0.5	15-25	max 1	100-300

Real Life

 Found on farm that each management group was different, fields had different status

- Important Message
 - One group can not represent a farm,
 - We need to sample multiple management groups to gain a whole farm picture!
 - 4 animals per group
 - ewes and lambs are different groups

The supplementation toolbox

Supplementation strategy

- Need to determine what risk is being covered
 - Need to know elements at risk and timescales
 - Need to know in which sheep
 - Need to know likely future management changes
 - eg Housing (copper toxicity)

Treatment/correction

- There are lots of supplementation options, eg
 - Direct to animal
 - Drench
 - Bolus
 - Injection
 - Free access minerals/ mineral licks
 - In feed
 - Pasture dressing
 - Changing management
 - Nothing?

Treatment/correction

- Need to know the expected duration of efficacy of any supplements
- Not all supplements do what they claim!
 - Duration of efficacy
 - Suitable release site
- The mineral world is often full of sales people
 - Unregulated often accused of myth and magic

Farm management example

- KPI project farm on South Downs
 - Uses data on field levels to define animal risk
 - Low Cobalt status lowland fields conserved to feed out as part of mineralised TMR
 - Higher lowland cobalt status fields grazed
 - Low cobalt Down land direct animal treatments
 - or short time-period and take status decrease hit

confirmation

- Continued monitoring of inputs
 - Forage, grass, bloods, performance
- Consider
 - 'on farm' trials (must be fair!)
 - Use of sentinel groups of animals
 - Even though get an enhanced 'blood' performance it is the animal performance that pays

Summary

- Inputs to define risk
 - Forage analysis
 - Blood analysis
 - Flock performance
 - Previous years experience and analysis
 - Changes in management
- Supplement or not dependant on determined risk
 - Different groups different risks
 - eg Post weaning growing lambs have higher cobalt risk than ewes.

Thank you

Acknowledgments

Funding

- EBLEX (now AHDB Beef and Lamb)
- NET-TEX
- DEFRA-SIP

Collaborators

- Peter Bone (Ruminant Mineral Consulting)
- Kevin Sinclair (UoN)
- Lesley Stubbings (LSSC Ltd)
- Nerys Wright, Liz Genever (AHDB Beef and Lamb)
- KPI study farmers
- Martin Green, Richard Emes (UoN)